
Flexibility Through
Im

m
utability

Ricardo J. M
éndez

ricardo@
num

ergent.com

@
ArgesRic

W
arning!

Talk contains opinions
and

anecdotal evidence.

@
ArgesRic

W
hat w

e’ll talk about

•
Q

uick background on im
m

utable data and FP.

•
Advantages and trade-offs. i.e., “w

hy bother?”

•
Four sim

ple things to put it in practice in an object-oriented
language.

@
ArgesRic

G
etting to know

 each other

@
ArgesRic

About m
e

•
Softw

are engineer, run N
um

ergent.

•
W

ork m
ostly w

ith data-oriented projects, on m
edia, health care

inform
ation m

anagem
ent, and financial com

panies.

•
Run project-specific, distributed developm

ent team
s.

•
D

oing softw
are developm

ent professionally for 20+, hacking around
for longer.

@
ArgesRic Anyone w

orking w
ithout

garbage collection?

@
ArgesRic

W
ho’s w

orking on a functional
program

m
ing language?

@
ArgesRic W

hat are you w
orking on?

Python? Ruby? Java? C#?

@
ArgesRic

W
ho is already using

im
m

utable data som
ew

here?

@
ArgesRic

M
y path here

@
ArgesRic

Com
e for the functional w

ay,
stay for the im

m
utable data.

@
ArgesRic

Realized im
m

utable data m
ade

code easier to refactor.

@
ArgesRic

@
ArgesRic

@
ArgesRic If you have m

utable data,
you have to take things on faith.

@
ArgesRic

@
ArgesRic

Can a long-lived object trust w
e

w
on’t change its param

eters?

@
ArgesRic W

hy im
m

utable data?

@
ArgesRic

There is no frictionless
m

ovem
ent.

@
ArgesRic

Stop thinking about operations,
start thinking about results

@
ArgesRic

Functions that acts on the sam
e

data set becom
e idem

potent.

@
ArgesRic

Im
m

utability  
is not  

statelessness

@
ArgesRic

You have a state.
Your state is your w

orld view
.

@
ArgesRic W

hen your state changes,
you don’t discard know

ledge.

@
ArgesRic A

 functional approach

@
ArgesRic

M
any inputs, one single output.

@
ArgesRic

Values are im
m

utable.

@
ArgesRic

Functions do not trigger any
state side-eff

ects.

@
ArgesRic

Functional is about sem
antics,

languages just help

@
ArgesRic

“The m
ost boring things in the

universe”Constantin D
um

itrescu @
 BucharestFP

@
ArgesRic

Show
 of hands again…

C# / Java users.

@
ArgesRic

Strings!
•

D
o you have a problem

 understanding how
 they w

ork?

•
D

o you think they are exciting?

•
Are you w

orried that they’ll be changed from
 under you?

•
Are you concerned about using it as a key in a dictionary?

•
H

ave you had to check the im
plem

entation?

@
ArgesRic Strings are boring, reliable,

im
m

utable data item
s.

@
ArgesRic

@
ArgesRic void D

oSom
ethingToO

bject()

In-place Add/Rem
ove 

 
ref and out

@
ArgesRic D

ealing w
ith unknow

ns

@
ArgesRic

@
ArgesRic

@
ArgesRic For an unknow

n m
ethod:

1. Poke it.
2. Read it.

@
ArgesRic

Being fully acquainted w
ith the

code is the only option w
ith

m
utable data.

@
ArgesRic

1. H
ave access to every source

involved.

2. H
ave the tim

e available.

@
ArgesRic

There’s unknow
ns everyw

here.

The larger the team
, the m

ore
unknow

ns.

@
ArgesRic

1. N
ot everyone w

ill understand
the subtleties of the language.

@
ArgesRic

2. N
ot everyone w

ill understand
the subtleties of your code base.

@
ArgesRic

But… 
 

Single Responsibility Principle!

@
ArgesRic

Cross-cutting concerns m
ake

Single Responsibility non-trivial.

@
ArgesRic

Eventually, you’ll encapsulate
your herd of m

ethods.

@
ArgesRic

Encapsulation reduces m
ental

clutter.

It also obscures.

@
ArgesRic Readability is only a part of

Com
prehensibility.

@
ArgesRic Functional, the O

O
P w

ay

@
ArgesRic

1. Structs can be a gatew
ay drug.

@
ArgesRic

2. D
on’t m

utate your objects.

@
ArgesRic

Vector.N
orm

alize()

Vector.N
orm

alized

@
ArgesRic

em
ployee.Salary += 100

Em
ployee SalaryChange(float v)

em
ployee.SalaryChange(100) 

.SetSom
eProp(true)

@
ArgesRic

3. W
rite to Enum

erables, not to
Collections.

@
ArgesRic

3.a. U
se the functional facilities

for result generation (W
here,

Select, etc).

@
ArgesRic

4. U
se im

m
utable collections.

.N
et: https://m

sdn.m
icrosoft.com

/en-us/library/system
.collections.im

m
utable(v=vs.111).aspx

Java: https://github.com
/google/guava/w

iki/Im
m

utableCollectionsExplained

@
ArgesRic

http://clojure.org/

@
ArgesRic

W
here to do this?

@
ArgesRic

Business logic?

@
ArgesRic Logic is about reasoning
according to strict principles of

validity.

@
ArgesRic

U
I?

@
ArgesRic

U
I should be about  

representing state.

@
ArgesRic

re-fram
e’s event conveyor belt

https://github.com
/D

ay8/re-fram
e

@
ArgesRic

“O
h w

ell, that’s all fine for tw
o

divs and a listbox”

@
ArgesRic

D
efold

https://w
w

w
.youtube.com

/w
atch?v=ajX09xQ

_U
Eg

@
ArgesRic

For a sim
ple U

I, anything w
ill do. 

 
For a com

plex U
I,  

im
m

utability helps.

@
ArgesRic

D
ata layer?

@
ArgesRic

@
ArgesRic W

here N
O

T to do this?

@
ArgesRic

Is RAM
 a concern?

Is the G
C hit a concern?

Is raw
 perform

ance a concern?

@
ArgesRic

W
hy do this?

@
ArgesRic

Trading off
 G

C hit for a codebase
that’s easier to reason about.

@
ArgesRic

You’ll never have to w
onder

about side-eff
ects w

hen
refactoring again.

@
ArgesRic

You’ll w
rite code that’s easier to

delete.

@
ArgesRic

Easier threading.

Easier to offl
oad processing.

@
ArgesRic

"W
ho’s holding these objects?" 

 
W

ho cares?

@
ArgesRic

Im
m

utable data lets you focus
on com

prehension, 
not m

em
ory.

@
ArgesRic

Conclusions

@
ArgesRic

Im
m

utability frees you to change
your m

ind.

@
ArgesRic

To be in control, you have to know
.

M
utability dem

ands you take
things on faith.

@
ArgesRic

Try som
e functional patterns.

Replace trust w
ith certainty.

@
ArgesRic

Q
uestions?

@
ArgesRic

Thank you!
Ricardo J. M

éndez
ricardo@

num
ergent.com

https://num
ergent.com

/talks/

