How deep are your
tests?

Thomas Sundberg

Think Code AB
http://www.thinkcode.se
@thomassundberg
thomas@thinkcode.se

My opinions

If you don't agree,
ask yourself why

and find me for a discussion

Why should we test?

Create confidence to release

Create value
Reduce waste

Get feedback from real users
Was this what they wanted?

Who are we testing for?

Ordinary persons

Quality is what the end user experiences

End-to-end

From the user interface

From an endpoint

Integrated

Interesting behavior with many objects
(interesting as in complicated)

Unit

Boring behavior with few objects

"
A
‘

A
¢
.
¢

A

-

' -
ol b o o e -

'O

e wy > W P W™ P =

¥ -
B oad % o % o % @
. .~ »

Testing pyramid
End-to-end

Integrated

Unit

End-to-end s,
Ly,
%
Slow S
S0
Done by someone else
Risk based - acceptance

Verifies that everything is connected - wiring works
Many execution paths

Bad feedback - where did it break?

The wider the scope - the more fragile tests

JSON —

{ator

Depth of field

Depth of field Is the amount ¢
the nearest and farthest obje
acceptably sharp focus in a

Depth of field

Depth of field is the amount of distance between
the nearest and farthest objects that appear In
acceptably sharp focus in a photograph.

It IS very subjective what you think is ok.

Testing cone

Low precision

Responsible department

Confidence/Risk

Business

Depth

Technical
Unclear precision

High precision Fast

Stable

m N W = e .
““l .'.

High precision

Stable
rll‘\

Integration or integrated?

Integrated as in large chunks of functionality at
the same time.

NOT integration as in integration with external

services.
Probably out of your control

Integration with external services are needed,
but thats (kind of) another topic.

Integrated tests

Executions paths

A

3

Sy
I

a3 X8x5=120

5

Executions paths

3X8XxXx5x13 =1560

Executions paths - what is the problem?

This is the

14000

problem...

Branching points Integration tets Unit tests

15 8 \\\
I ———
840 23
2520 26
12600 31

12000

10000 +—

Ul W ~d 0 U W
(WY
N
o
Y
(e)]

8000

6000

4000

2000

Ockhams razor

Among competing hypotheses, the one with
the fewest assumptions should be selected.

William of Ockham (c. 1287-1347)

Interpretation

The fewest assumptions = less risk

Unit tests

<
vv@ " .
0

{

Unit test definition

A unit test is an automated piece of code that invokes a unit
of work in the system and then checks a single assumption
about the behavior of that unit of work.

Roy Osherove

Test a small part

One, and only one, reason to f

Unit test definition

>c:_:mm:mm:mc83mﬁmaU_momodﬂooam%mﬁ_:<oxmmmc:: \ww\\w
of work in the system and then checks a single assumption Q
about the behavior of that unit of work.

Roy Osherove

Test a small part
One, and only one, reason to fall
Can be executed in parallel

Fast - sub seconds

A unit test does not

have more than one reason to fall
offer slow feedback

require exclusive execution

use the network

use the file system
talk to the database

Michael Feathers

Conversation
e

Consumer Provider

Can | ask particular Am | able to understand
guestions? her?

Do | get the expected Am | able to answer her

answers back? guestions?

P2

Verify interaction with Define expected
mocks (expectations) methods

Stubs returns expected Implement the
values (answers) methods correct

Interaction === Test action
Answer =P Assert

That was abstract...

An example would be nice

Checking taxes

Income rules Vat rules

Verify interaction with mocks (expectations)

@Test

public void check_that_the vat _rule_engine_is_used() {
VatRules vatRules = mock(VatRules.class);
Business business = new Business("any string", vatRules);

business.getVatDueDate();

verify(vatRules).getVatDueDate(anyString());
}

Forces me to implement the method,
getVatDueDate(String orgNumber)

Stubs returns expected values (answers)

@Test
public void check_due_date_for_vat_when_you_invoice_within_eu() {
LocalDate expected = LocalDate.parse("2016-02-28");

VatRules vatRules = mock(VatRules.class);
when(vatRules.getVatDueDate("5569215576")).thenReturn(LocalDate.parse("2016-02-28"));
Business business = new Business("5569215576", vatRules);

LocalDate actual = business.getVatDueDate();

assertThat(actual, is(expected));

Implement the methods correct

@Test

public void vat_due_date is 28 feb if invoicing_in_eu() {
LocalDate expected = LocalDate.parse("2016-02-28");
VatRules vatRules = new VatRules();

LocalDate actual = vatRules.getVatDueDate("5569215576");

assertThat(actual, is(expected));

}

@Test

public void check_that the vat rule _engine_is_used() {
VatRules vatRules = mock(VatRules.class);
Business business = new Business("any string”, vatRules);

business.getVatDueDate();

vatRules).getVatDueDate(anyString());

Interaction
Test action

when(vatRules.ge
Business business = n

ueDate("5569215576")).thenReturn(LocalDate.parse("2016-02-28"));
usiness("5569215576", vatRules);

LocalDate actual = business.getVatDueDate();

assertThat(actual, is(expected));

} Answer
Assert

@Test
public void vat_due_date is 28 feb if invoicing_in_eu()
LocalDate expected = LocalDate.parse("2016-02-

VatRules vatRules = new VatRules();
LocalDate actual = vatRules. ueDate("5569215576");

assertThat(actual, is(expected));

}

Interaction === Test action

=P Assert

Answer

Like book keeping,
every transaction has to balance.
(The sum should be 0)

Executions paths

A

3

3+8 =311+

Executions paths - what is the problem?

This is the

14000

problem...

Branching points Integration tets Unit tests

15 8 \\\
I ———
840 23
2520 26
12600 31

12000

10000 +—

Ul W ~d 0 U W
(WY
N
o
Y
(e)]

8000

6000

This Is the
solution...

2000

Outside In

Double loop TDD

From Growing Object-Oriented Software by Nat Pryce and Steve Freeman

It takes so long time!

You have plenty of time...

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE

EFFCIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?
(ACROSS FIVE YEARS)

HOW OFTEN YOUL DO THE TRSK

| |
Ofoey Yoay DALY WEEKLY MONHLY YEARLY

Always ask yourself
"How can this be tested?"

If It can't be tested,
can It be used?

Can you test this with a unit test?

If not, what Is the problem
with your design?

Testing cone

Low precision

Responsible department

Confidence/Risk

Business

Depth

Technical
Unclear precision

- Y

f » High precision

Fast

Stable

Conclusion

A few deep tests

Does the system start?
S it properly wired?
Do we have enough confidence to release?

Most shallow tests
One reason to fail - good feedback

Fast

Small - forces you to simplify collaboration
Can drive a good design

Crashing hard is not a problem,
If the altitude Is low enough.

Kent Beck

Acknowledgments

& Software Dev Gang
—" ‘.r —- Berlin, October, 2015
ODECO

@he_313 @codecopkofler

How deep are your
tests?

Thomas Sundberg

Think Code AB
http://www.thinkcode.se
@thomassundberg
thomas@thinkcode.se

