the difference between

treatment

cure

¢) Milen Dyankov

W @emilendyankov
MARCH 17. 2015

pidot java

pidot java
9odd 2151

pidot java
9odd 2151
ps aux | grep java | grep —v grep | awk {print 523

pidot java
9odd 2151

ps aux | grep java | grep —v grep | awk {print 523
2151
'y

Lobh
Fhla

425 Junady wee | daab n- daab | enel daab | xne sd

Fale dobh
pael joped

What are

marti

WARTIN FouLER

Infro Design Agile Refactoring NoSQL DSL Delivery About

Microservices

The term "Microservice Architecture" has sprung up overt
particular way of designing sofiware applications as SuUiles
services. While there is no precise definition of this archite
common characteristics around organization around DUsir
deployment, intelligence in the endpoints, and deceniralize

Contents
Characteristics of a
Componentizatio
Organized aroun
Products not Pro
ghtWorks and Smart endpoints
mber of the Decentralized Gc
| f Decentralized Dz
Infrastructure Au
Design for faill
Evolutionary Des
Are Microservices fl
Sidebars
How big is a micros
Microservices and
Many languages,
Battle-tested standz
Make it easy to do t
The circuit breaker
Synchronous calls ¢

MiCrasenrvices
characteristics!

Componentization via Services
Organized around Business Capabllities
Products not Projects

Smart endpoints and dumb pipes
Oecentralized Governance
Oecentralized Data Management
Infrastructure Automation

Design for falure

Evolutionary Oesign

martinfowler.com/articles/microservices

WARTIN FouLER

Infro Design Agile Refactoring NoSQL DSL Delivery Al

Microservices

The term "Microservice Architecture" has sprung up overt
particular way of designing sofiware applications as SuUiles

arch 2014

James Lewis

mponentize software
2 claims

Contents
Characteristics of a
Componentiz

Organized a !
Products not Pre
Smart endpoints’
Decentralized Gc
Decentralized D
Infrastructure A
Design for fai
Evolutionary D
Are Microservices t

Sidebars

How big is a mi
Microservices
Many languages,
Battle-tested standz
Make it easy to do t
The circuit breaker
Synchronous calls ¢

50« not strictly software but
rather operations related!

Organized around Business Capabllities
Products not Projects

Decentralized Gaovernance

Infrastructure Automation

Evolutionary Oesign

Why consider

[www.business.com =
[www.pwc.com/us/e

The main benefit of using microservices is that, unlike a monolithic architecture Why microservices?

style, a change made to a small part of the application does not require the In the software development community,

: : : : : it is an article of faith that hould b : g :
entire structure to be rebuilt and redeployed (Tweet This!). This results in much “a_jwﬁwﬂ ﬂ_h_” Mﬁwaw_a mwgﬂwﬂww oudbe Greater modularity, loose coupling, and
reduced dependencies all hold promise in

_mwmv if not zero downtime. programming interfaces (APls), using
common services when possible, and simplifying the integration task.
managed through one or more

E:SEQ.SE_? 1712} services-a orchestration technologies. Often, there's

. . — - a superstructure of middleware, integration methods, and management tools. That's great for software
WO“ what are microservice _.Qm__< and how does this designed to handle complex tasks for long-term, core enterprise functions—it's how transaction systems

architecture improve delivery cycles? and other systems of record need to be designed.

Microservices were developed as a way to divide and conquer. But these methods hinder what Silicon Valley companies call web-scale development: software that must
evolve quickly, whose functionality is subject to change or obsolescence in a couple of years—even
Basically, the microservices approach in a nutshell dictates that instead of having months—and where the level of effort must fit a compressed and reactive schedule. It's more like web

one giant code base that all developers touch, that often times becomes perilous to page design than developing traditional enterprise software.
manage, that there are numerous smaller code bases managed by small and agile
teams. The only dependency these code bases have on one another is their APIs. B - vwwinfoq.comin

This means that as long as you maintain backwards and forward compatibility Some of the benefits of microservices are pretty obvious:
(which albeit is not that trivial), each team can work in release cycles that are
decoupled from other teams. There are some scenarios where these release cycles
are coupled, where one service depends on another or depends on a new feature in

« Each microservice is quite simple being focused on one business capability

+ Microservices can be developed independently by different teams

« Microservices are loosely coupled

another service, but this is not the usual case. + Microservices can be developed using different programming languages and tools

| 00 |/xueN

Netflix /

o,

/ _O_\O@O.ﬁﬂ Google Cloud Platform

||
B
>
N
=
®

yosouoiN |

wopeld pnop) 3800y

mn{!mam

e > ¢ martinfowler.com/articles/microservices

i Ty s — e = -

' reasons why one might expect microse
ntization, success depends on how well

its. It's hard to figure out exactly where the comp

ary design recognizes the difficulties of getiing be

and testing is made more complicated.

If the components do not compoas
N inside a component to the
complexity around, it mao
It's easy to think things are better when
mponent, while missing messy connectio

the factor of team skill. New techniques te!
But a technique that is more effective for a more sk

th becomes a problem. (Although this advi
process interface is usually not a good service interface:)

So we write this with cautious optimism. So far, we've
0se style to feel that it can be a worthwhile road &
where we'll end up, but one of the challenges of software'd
e de ns based on the imperfect information that yo

then all you are doing is shifting
complexity from inside a
component to the connections
between components.

It moves it to a place that's
less explicit and harder (o
contral.

Whals cool about

“The real power .. Is the abllity for a developer to develop a
single entity and then deploy that component multiple tmes”

"Highly Scalable, Robust, Architecture”

“In very straightforward terms ... IS @ component model for
buillding portable, reusable and scalable business
components ... for distributed environment.”

Ouotes from articles about EJB
(1999 - 2002)

“The real power .. Is the ability for a developer to develop a
single entity and then deploy that component multiple tmes”

wWww.onjava.com/pub/a/onj@ava/2001/12/19/eejbs.htmi

"Highly Scalable, Robust, Architecture”

www.dhlee.nfo/computing/ejb/reference/seybold_ejb.pdf

“In very straightforward terms ... IS a component model for
bullding portable, reusable and scalable business

components ... for distributed environment.”
www.idt.mdh.se/kurser/ct3340/archives/ht08/paperskRM0O8/37 .pdf

€« = ¢ _ web.archive.org/web ' fwww.nwfusion.col

INTERNET ARCHIVE http:/f/www.nwfusion.com/news/2001/0821

UAWBSCHTRENID e cotres N

Search sponsored by

NetSmart
IT Education

4

BlHoms Printer-friendly | Send to a friend | Feedb
D News:

NetFlash:Dally News | Gartner: don't overspend o

International News server tech
D This Week

b The Edge By Scarlet Pruitt

D Met.Warker IDG News Service, 08/21/01

[> Features

D Research Vendors touting high-end application

server technology have led companies to
dramatically and unnecessarily overspend. Xi
according to a report released Tuesday by

. technology researcher Gartner.
Vendor Profiles L=

D> Forums
P> Calumnists/Opi
D Knowledgebase

Buyer's Guides
Reviews

Technology Primers

1ies worldwide have overspent

about $1 billion on application Servers
technology since 1998, according o

Experts Exchange Gartner. Furthermore, the researcher

Help Desk predicts that companies could wastei$2

Dr. Internet billion more between now and 200359

Gearhead
D Careers This is because application Server Vendorsa
Diren Nowslatiars are encouraging customer to buy high=cad
technology that they don't need; Gartici

P> Subscription Center
said.

> Seminars/Events
> Reprnts/Links

"When there is confusion the vendors
> White Papers

have heen all taa willine ta t o advantaoce n

Companies worldwide
have averspent
about $1 billian

vendors are encouraging
customer to buy
high-end technology
that they dont need.

Who 5 doing

ag
=
2
e
f=")
=]

ano1daNnos

ag
=
2
e
f=")
=]

J Uowwod ul aney Aauyl op 1Bum

- S
<
e N

s
Y

= A Y
o T :
- >
s
DAL - i s e 5 yi %2 A
3 = o
% 5
s i o
-
= £l
e g A
]
.
’

T

SOUNDCLOUD

Linked[T1]

They build
micraservices for

their own needs!

T

e a b
» v =
2 ;'_ _':‘;. -2 2 G
% A
PR - T A s
Q. 4 o9t
R s
e “Q.‘

e o ‘—‘

ST i % e
27

s

L

NETFLIX

T

SOUNDCLOUD

Linked[T1]
allegro

guardian

They build
micraservices for

their own needs!

This makes It easer for them to
grow the DevOps culture

hire the right people
accept "Decentralized” approach

automate infrastructure

9

€« o5 & martinfowler.com/articles/microservice:

R L e

Often the true consequences of your architectural decisio
after you made them. We have seen projects where a goc
1odularity, has built a monolithic architecture that has de
ple believe that such decay is less likely with microse
laries are e» and hard to patch around. Yet unti

ntization, success depends on how well m Hmn—l—_l——ﬂ_l_m H—l—mﬂ —m —I—I—Djm m.ﬂ.—..mnﬂ_<m

ponents. It's hard to figure out exacily where the €o

ance of it being easy to refactor them. But when yo ﬂDj m _I_I—D—I-m mx———_ﬂ_l—— Hmm—l—l—

remote communications, then refactoring is much harder

st o parcons e 1SNt necessarily going to work

and testing is made more complicated.

>_.__o3_u. issue is If the components do not compose clea _ﬂnj —m m m mx — — —.H—l— — Hm m —l—l— m

N inside a component o the conne

It's easy to think things are better when
mponent, while missing messy connectio

Iding messy monolithic architectures, but it takes time

nd of mess occurs with microservices. A poorie

A poor team will always create
a poor system

th becomes a problem. (Although this ac
process interface is usually not a good service interface.)

» this with cautious optimism. So far, we've see

style to feel that it can be a worthwhile road

where we'll end up, but one of the challenges of software
e de ns based on the imperfect information that

Wi 1 oo

NETFLIX

Does your organization
HHITHITH -

fit iINnto that spacer
Linked[T1]

icles/microservice

' reasons why one might expect micro:
ntization, success depends on how well
its. It's hard to figure out exactly where the com)

ance of it being easy to refactor them. But when yo
tions, then refactoring is much harder
difficult across service boundaries, any in

It's easy to think things are better when
mponent, while missing messy connectio

the factor of team skill. New techniques te
But a technique that is more effective for a more

=comes a problem. (Although this ad
process interface is usually not a good service interface.)

: this with cautious optimism. So far, we've
0se style to feel that it can be a worthwhile road
where we'll end up, but one of the challenges of software
e de ns based on the imperfect information that y

you shouldnt start with a
microservices architecture.
Instead begin with a monaolith,

Keep it modular.,
and split it iInto microservices
once the monolith
becomes a praoblem.

what eise, o nob

Microservices do not
CUINe complexity!

Actually nothing does !

PN /) The term "CUINE" means that,
WA N after medical treatment, the patient
gt g no longer has that
particular condition anymore.

Some diseases have Nno cure.
The patient will always have the

condition, but Ereatment
can help to manage .

Good treatment for
complexity I1s enforcing

cClean
modular
architecture

Clean Micro-service Arc

01 October 2014

ment Model is a Detfail.

If the code of the components can be written so
mechanisms, and process separation mechanism
mechanisms are details. And details are never pa

That means that there is no such thing'a
Micro-services are a deployment oplion;
tions, a good architect keeps them @p
chitect defers the deeis
st responsible moment.

Restrictions down the scale.

As you move down the scale from micro-services
jars, you start to lose some of those flexibilities:
less flexibility you have with langnages. You also
of frameworks and databases. There is also a gre
between components will be inereasingly couple
to reboot components that live in a single exeel

Or is it? Actually OSGi has been around in the Ja
r. OSGi allows you to hot-swap jar files. That"
bouncing a micro-service, but it's not that far fro

As for languages, it's true that within a single vi
restricted. On the other hand, the JVM would all
Clojure, Scala, and JRuby, just to name a few.

The Deployment Model 1s a Detall.

there i1s no such thin
as a micro-senrvice

architecture.

MiCro-services are a
deployment option

Interesting 17!

But in my project it's not
possible because of . ..

Really ?I?

Modularizing
“Duke’s farest”
JdEE tutorial demaol

https://github.com/azzazzel/modular-dukes-forest

Glassfish

Store
JPA, EJB
JSF

ElB 0sGi

JIEE controllers services
container _.._.__u_..w__m_.__._m
Catalog
usecase
<
T
©
()}
SpringBoot Liferay

JEE
container

EJB
controllers

Catalog
usecase

Domain

Database

Catalog
usecase

Domain
Model

SpringBoot

05ai
services

0SGi

runtime
Catalog

usecase

Domain
Model

05ai
services

Catalog
usecase

Domain
Model

Liferay

oﬂ@ Controllers
Ry

0@ | Enterprise Business Ru
Use Cases __| Application Business F
|| Interface Adapters

.| Frameworks & Drivers

> Entities

Use Case |
Output Port

1

Use Case
Interactor

Presenter

http://blog.8thliight.com/uncle-bob/2012/08/13/the-clean-architecture.ntml

Mocuiariiy

Is @ important software architecture concept!

One can design modular application without

The 050G1 specification describes
a modular system and a
service platform for the

Jdava programming language

Confluence
Eclipse
Fuse ESB
Glassfish
Jdboss
BALIFERAY == ure
; JonAS

Service Mix

Weblogic

Websphere

The architecture
of choice far

Same characteristics but
more flexible !

Componentization via Services

Smart endpoints and dumb pipes

Decentralized Data Management

Design for faillure

This I1s not theory! We do this at E_.__um_N\PK

(@ BLACKDUCK | Open HUB v rolov Clf [EXRI
PROJECTS PEOPLE ORGANIZATIONS TOOLS CODE® BLOG E i

= g Lferay Portal 2 mom s\mm_ﬂ.mqm__._m_“n_ﬂ.:.___._n_
— S . — a huge code base
e B> e INto small simple core and
et 18 et st ol 0SG1 (micro)services!
We have so far extracted
over 80 apps and we are

not done yet!

Zoom lyr 3yr Syr All

ANKSCHEEN

oy YAQHANYELAY s m
— D mRCHALTA ._.hmzh_n—n:ﬂ ATU ¢

GRACIAS &
m AH E “—:.mlam

T £ pEMMAL.A
e W A HEMNACHALHYA >
ARIGATO ;i {3
SHUKURIA 3 = &
el Q8 GOZAIMASHITA 2 -
.u EFCHARISTO *wr= =]
m FAMAKLIE m_ M

<] MILEN.DYANKOV@LIFERAY.COM
,F HTTP://WWW.LIFERAY.COM
,F HTTP://WWW.LIFERAY.COM/WEB/MILEN.DYANKOV/
YW @LIFERAY
@MILENDYANKOV
L 4 .
@LIFERAYPL f HTTP://WWW.FACEBOOK.COM/LIFERAY

