Mutation lesting to the
rescue of your tests

@nicolas_frankel

An event proudly designed by

_ —A . mmNm \i/\ EONm_o

, Think. Design. Work smart.
\ 4

Me, Myself and |

By day

e Hybris consultant
e By night

» Teacher/trainer

 Book Author: Vaadin,
Integration Testing

» Blogger: https://blog.frankel.ch/

* Speaker

Many kinds of testing

Unit Testing
Integration Testing

End-to-end Testing

Performance Testing
Penetration Testing
Exploratory Testing

etc.

Thelir only single goal

* Ensure the Quality of the
production code

* How to check the Quality of
the testing code”?

Code coverage

* “Code coverage is a measure
used to describe the degree
to which the source code of a
program is tested”

. --Wikipedia
htto://en.wikipedia.org/wiki/
Code_coverage

defs cvslib
defs

Classes

6
15
28
7
28
S0
S
18
S
27
125
303
68
84
17
79
167
83
10

37
15
20
10

11
20

v = o

Line Coverage "

s | sose M
e avso
57 | 197295
s | 2es2GE
Ot
s: | s27isaAm
oy
sie | 13apsSN
sos [0 27
soe | S4aiSEAN
s 139 auRON
s s ESSE
s G2
s o
T
s ssqaoSSIN
s | 1qBESOT
s 7SAEISON
e S
s SN
255 [RSN
o SN
5 | SO
o | ST
5 |
s
—
ov S
0% S
ez
0% S
ov |

Branch Cov
1% [l
wal
so% Il
0% I
39% Il
37%
4% I
37%
17% B
%
a3% [
3% Il
2%
2% I
36% Il
2% [
29% I
=% [l
24% I
™ Il
1% I
% Il
2% Il
% [
s% Il
|
>+
bl |
o% Il
o% Il
o% Il
o% Il

Measuring Code Coverage

 Check whether a source code
line is executed during a test

* Or Branch Coverage

Computing Code Coverage

* CC: Code Coverage

(in percent) h
QQ __ __executed % 100
* Lo ecuteq: Number of executed h
lines of code total

e L. Number of total lines of
code

Java Tools for Code
Coverage

JaCoCo
Clover
Cobertura

efc.

100% Code Coverage”

‘Is 100% code coverage
realistic? Of course it is. If you
can write a line of code, you can
write another that tests it.”

Robert Martin (Uncle Bob)
https.//twitter.com/
unclebobmartin/status/
55966620509667328

Assert-less testing

@Test
public void add should add() {
new Math () .add (1, 1);

But, where is the assert!?

As long as the Code Coverage is OK...

Code coverage as a
measure of test quality

* Any metric can be gamed!
* Code coverage is a metric...

* = Code coverage can be

gamed
* On purpose

* Or by accident

Code coverage as a
measure of test quality

* Code Coverage lulls you into a
false sense of security...

The problem still stands

* Code coverage cannot ensure
test quality

* |s there another way?

The Cast

Original Source Code

Modified Source Code
a.k.a “The Mutant”

Standard testing

Execute Test W.

Mutation testing

Execute SAME Test

Mutation testing

Execute SAME Test

Mutant Killed

Fxecute SAME Test

Mutant Survived

Jest the code

public class Math ({
public int add(int 11, int 12) {
return 11 + 12;

Execute Test

@Test
public void add should add() {
new Math() .add (1, 1);

}

Surviving mutant

public class Math ({
public int add(int 11, int 12) {
return 11 - 12;

J

Execute SAME Test

@Test
public void add should add() {
new Math().add (1, 1);

}

Jest the code

public class Math ({
public int add(int 11, int 12) {
return 11 + 12;

Execute Test

@Test
public void add should add() {
new Math() .add (1, 1);

Assert.assertEquals (sum, 2); f
}

Killed mutant

public class Math ({
public int add(int 11, int 12) {
return 11 - 12;

J

Execute SAME Test

@Test

public void add should add() {
new Math () .add (1, 1);
Assert.assertEquals (sum, 2);

Mutation lesting in Java

PIT is a tool for Mutation
testing

Available as

e Command-line tool

* Anttarget

* Maven plugin ﬂv_ﬁmm.ﬂ.o _‘.m

Mutators

* Mutators are patterns applied
to source code to produce
mutations

Pl T mutators sample

Conditionals Boundary > >=

Negate Conditionals

Remove Conditionals foo == bar true
Math + _

Increments foo++ foo--

Invert Negatives -foo foo
Inline local variable int foo= 42 int foo= 43
Return Values return true return false

Void Method Call System.out.printin("foo")

Non Void Method Call long t = System.currentTimeMillis() longt=0

Constructor Call Date d = new Date() Date d = null;

el ybnou3

Slow
Sluggish
Crawling
Sulky
Lethargic

etc.

Drawbacks

Metrics (kind of

— cm— GSI vSI nm— sk —m— omwmv— 8P LbL 9bL SbL bbL €L 200 L0 O

,,,,,,

On joda-money

.________ ___._j___;;__i_..__+

mvn clean test-compile md3wu2“m3“~gwm§w_£@uzmmgmw

mvn surefire:test

lanun T T e Ty -

. 55 16 e 8- £ Nm«_.m om 3 % > e St ot o)
* Jotal time: 2.181 s o s S ot s s

mvn plit-test...

 Jotal time: 48.634 s

Why so slow?

* Analyze test code
e For each class under test
* For each mutator
* Create mutation
e For each mutation
e Run test
* Analyze result

* Aggregate results

Workarounds

Increase number of threads - ©
Set a limited a set of mutators
Limit scope of target classes
Limit number of tests

Limit dependency distance

Don't bind to the test phase - ©
Use scmMutationCoverage

Use incremental analysis > ©

Incremental analysis

 Metadata stored between runs

e During each following run
mutant will not be checked
again, if the last time it:

e timed out, and class has not
changed

e was killed, and neither class
nor test have changed

e survived, and there are no
new/changed tests for it

False positives

* Mutation Testing is not 100%
bulletproof

* Might return false positives

e Be cautious!

Pit Is Imperfect
if (p < 0)
ww.ObmemQ condition boundary
// => survived:

if (p > 0)

return 0O;

PIt might be dangerous

void reboot () throws IOException {
// removed method call:
checkUserPermissions () ;
Runtime.getRuntime ()
.exec ("reboot") ;

Testing is about RO

 Don't test to achieve 100%
coverage

* Test because it saves money
in the long run

e Prioritize:
e Business-critical code

* Complex code

