
An event proudly designed by

M
utation Testing to the
rescue of your tests

@
nicolas_frankel

M
e, M

yself and I
•

By day

•
Hybris consultant

•
By night

•
Teacher/trainer

•
Book Author: Vaadin,
Integration Testing

•
Blogger: https://blog.frankel.ch/

•
Speaker

M
any kinds of testing

•
Unit Testing

•
Integration Testing

•
End-to-end Testing

•
Perform

ance Testing

•
Penetration Testing

•
Exploratory Testing

•
etc.

Their only single goal

•
Ensure the Q

uality of the
production code

•
How to check the Q

uality of
the testing code?

Code coverage

•
“Code coverage is a m

easure
used to describe the degree
to which the source code of a
program

 is tested”

•
--W

ikipedia 
http://en.w

ikipedia.org/w
iki/

C
ode_coverage

M
easuring Code Coverage

•
Check whether a source code
line is executed during a test

•
O

r Branch Coverage

CC
=
L
executed

L
total

*100

Com
puting Code Coverage

•
CC: Code Coverage 
(in percent)

•
L

executed : Num
ber of executed

lines of code

•
L

total : Num
ber of total lines of

code

Java Tools for Code
Coverage

•
JaCoCo

•
Clover

•
Cobertura

•
etc.

100%
 Code Coverage?

“Is 100%
 code coverage

realistic? O
f course it is. If you

can write a line of code, you can
write another that tests it.”

Robert M
artin (U

ncle Bob) 
https://tw

itter.com
/

unclebobm
artin/status/

55966620509667328 

Assert-less testing
@Test
public void add_should_add() {
new Math().add(1, 1);

}

But, w
here is the assert?

A
s long as the C

ode C
overage is O

K
…

Code coverage as a
m

easure of test quality
•

Any m
etric can be gam

ed!

•
Code coverage is a m

etric…

•
⇒

 Code coverage can be
gam

ed

•
O

n purpose

•
O

r by accident

Code coverage as a
m

easure of test quality

•
Code Coverage lulls you into a
false sense of security…

The problem
 still stands

•
Code coverage cannot ensure
test quality

•
Is there another way?

The Cast
O

riginal Source C
ode

M
odified Source C

ode
a.k.a “The M

utant”

Standard testing

✔
Execute Test

M
utation testing

?
Execute SA

M
E Test

M
U
TA

T
IO

N

M
utation testing

✗✔
Execute SA

M
E Test

Execute SA
M

E Test

M
utant K

illed

M
utant Survived

Test the code

✔
Execute Test

public class Math {

 public int add(int i1, int i2) {

 return i1 + i2;

 }

}

@Test 
public void add_should_add() {

 new Math().add(1, 1);
}

Surviving m
utant

✔
Execute SA

M
E Test

@Test 
public void add_should_add() {

 new Math().add(1, 1);
}

public class Math {

 public int add(int i1, int i2) {

 return i1 - i2;

 }

}

Test the code

✔
Execute Test

public class Math {

 public int add(int i1, int i2) {

 return i1 + i2;

 }

}

@Test 
public void add_should_add() {

 new Math().add(1, 1); 
 Assert.assertEquals(sum, 2);
}

Killed m
utant

✗
Execute SA

M
E Test

public class Math {

 public int add(int i1, int i2) {

 return i1 - i2;

 }

}

@Test 
public void add_should_add() {

 new Math().add(1, 1); 
 Assert.assertEquals(sum, 2);
}

M
utation Testing in Java

•
PIT is a tool for M

utation
testing

•
Available as

•
Com

m
and-line tool

•
Ant target

•
M

aven plugin

M
utators

•
M

utators are patterns applied
to source code to produce
m

utations

PIT m
utators sam

ple
Nam

e
Exam

ple source
Result

Conditionals Boundary
>

>=

Negate Conditionals
==

!=
Rem

ove Conditionals
foo == bar

true

M
ath

+
-

Increm
ents

foo++
foo--

Invert Negatives
-foo

foo
Inline local variable

int foo= 42
int foo= 43

Return Values
return true

return false
Void M

ethod Call
System

.out.println("foo")
Non Void M

ethod Call
long t = System

.currentTim
eM

illis()
long t = 0

Constructor Call
Date d = new Date()

Date d = null;

Enough talk!

Drawbacks
•

Slow

•
Sluggish

•
Crawling

•
Sulky

•
Lethargic

•
etc.

M
etrics (kind of)

•
O

n joda-m
oney

•
mvn clean test-compile

•
mvn surefire:test

•
Total tim

e: 2.181 s

•
mvn pit-test...

•
Total tim

e: 48.634 s

W
hy so slow?

•
Analyze test code

•
For each class under test

•
For each m

utator

•
Create m

utation

•
For each m

utation

•
Run test

•
Analyze result

•
Aggregate results

W
orkarounds

•
Increase num

ber of threads !
 �

•
Set a lim

ited a set of m
utators

•
Lim

it scope of target classes

•
Lim

it num
ber of tests

•
Lim

it dependency distance

•
Don’t bind to the test phase !

 �

•
Use scm

M
utationCoverage

•
Use increm

ental analysis !
 �

Increm
ental analysis

•
M

etadata stored between runs

•
During each following run
m

utant will not be checked
again, if the last tim

e it:

•
tim

ed out, and class has not
changed

•
was killed, and neither class
nor test have changed

•
survived, and there are no
new/changed tests for it

False positives

•
M

utation Testing is not 100%

bulletproof

•
M

ight return false positives

•
Be cautious!

Pit is im
perfect

if (p < 0)
... 
// changed condition boundary
// -> survived: 
if (p > 0)
...  
return 0; 

Pit m
ight be dangerous

void reboot() throws IOException { 
 // removed method call: 
 checkUserPermissions(); 
 Runtime.getRuntime()
 .exec("reboot"); 
} 

Testing is about RO
I

•
Don’t test to achieve 100%

coverage

•
Test because it saves m

oney
in the long run

•
Prioritize:

•
Business-critical code

•
Com

plex code

Q
&A

•
https://git.io/vznQ

K

•
http://blog.frankel.ch/

•
@

nicolas_frankel

•
https://leanpub.com

/
integrationtest/

