K.E.

Unconference

) . oy e

@codingandrey Patterns for
01 Infrastructure-as-Code

P

-

A

By

About me

Andrey Adamovich

Java/Groovy developer, clean coder
DevOps guy, automation junkie
Co-organizer of @latcraft and @devternity
Coach at @devchampions

Twitter: @codingandrey

What this talk
Is about?

Well...

Collection of patterns (and anti-patterns) for representing your

infrastructure-as-code.
Work in progress (never done).

Feedback is more than welcome!

Infrastructure-as-code

Infrastructure-as-Code (laC) is a type of IT infrastructure

that operations teams can automatically manage and provision
through code, rather than using a manual process.
Infrastructure-as-Code is sometimes referred to as programmable

infrastructure.

Images, declarations, tasks

images declarations

07

tasks

laC players

Image defitions
Provisioning declarations

Automation scripts

Tools

Image creation/management: Packer, Docker, AWS AMI/EC2 etc.
State declarations: Puppet, Chef, Ansible etc.
Automation blocks: SSH, APl + <your favorite scripting

language>

Periodic table of DevOps

PERIODIC TABLE OF DEVOPS TOOLS (/1) Xebialabs .MPEm "

Amazon
Web

o

3 Os = Free = _H\u = m = g n\.a 5 En|6 BEn|7 Os 9 Os |10 Pd
o Clrewm clew o

4l S Sh [Pu |n o, [

MySQL Pd Paid Chef Puppet Ansible Docker Azure

n =] 13 Fri™ En|15 0s | 16 17 Os| 18 Fm
En Enterprise |Loggng

Mq mm: _w_ <m Lki Rk |Hk

MSS0QL Temaform | rkt Heroku

"\ Os b = Os |23 En|2d Os|25 Pd| & n Fr|23 Os |3 Fr|a 0s | 3 Pd |2 Os |3 Fr|3 08 | 35

Pq Mv m Mr Gn el

PostgreS0L Maven Meister ._E.L.-.m ._|.N_=m a _ﬂ-&mmm _«..&.m..:mamm mmnrmvmnm

E) Os L] Fm | Q Fm | & Fm | &4 Fm | 45 Os |4 Fr|i&@ Os | &8 Frja Fris Fr|s Os |52 08| 53 Fr|s4

Mg > Cs _Oq O: Cj D: Oﬁ Ia Cf

MongoDB m..l.-_ﬂm—n- Codeship Snap Q Cucumber_js ._F_.._ CFEngine _umnrm- E:m_._.-u

5 En Fm | 58 En|= Pa| &0 Fm | 61 Fm | 62 Os |63 Os |64 Fr|6s Fr|es Fr|&r Fm | 8 En|Tm

Db Ub Ta |Ay on

DBz Visual Build .ﬂog ol) Artifactory .__..ss Lzlﬁ. .qm.zm nx.honﬁ Dn_ zono m_mh._.n Baox pr.u_z_m

7 Fr Os | T8 w Os |78 Os| ™™ Fmi | 80 Os | 8 Os |82 Os |8 En |84 En| 85 Os | 86 En m-. En |88 En|®@

Cs gmu Rk |Lb |co |ca |Gu |Ng |Ap [Xitv [Tc [Go Xid (Ud _so

Cassandra MSBuild Rake LumnitBusld Continssn | Contimua Cl | Gump MuGet Appium X1 Test\iew | TestCompletd Go BlectricFow | XL Deploy Mesos

Share

u#n | ES s em ow m=~
Embed _q e, _Nq
AL Release _.s.mwmm Virtualization mm.mmm mx%_ Reloase mm.mmm qﬂ! h-u qiuﬁ
& ¢ @ =2

Become Excellent!

Os Os | 112 Fm | 113 En| 14 Fm | 115 Os | 116 Fm | 117 0s | 118 Os | 118
_.m mq
Kibana Mew Relic Zma.om .:ﬂsld&..e.m-h_.—.

= Subscribe herel

Everything is code!

| mm.mmmm

Code "deployment” (one click away)

Control Center

132 ¥

STAGING W

Automation
Processes

Infrastructure

Code "deployment” (one commit away)
_<mq£o: Control _

Automation brings to state ’
initiates I\\ Processes mm‘

Infrastructure

Let's see
some

patterns!

Anti-pattern: Golden Image

Manually crafted base infrastructure server image that nobody dares

or knows how to change.

Pattern: Reproducible Images

Operating system distributions (*.iso).
Base provider images.

Packer can create images for many virtualization software and cloud

providers.

Docker can build and package containers as images for distribution.

Pattern: Secret Isolating

Everything is code, but secrets are not!
Secrets should reside in a separate location!
Secrets should be injected on the very last stage of "deploying" your

code.

In this way, the actual code still remains sharable.

Pattern: Encrypted Secrets

Shared secrets must be encrypted!
Well, all stored secrets must be encrypted!

Decryption password is shared through a different channel.

Encryption options

Encrypt hard drives
Encrypt files in version control

Use vault service

Encryption options: GPG

GPG/PGP:

> cd <path-to-your-repo>/

> gpg --encrypt sensitive file
> git add sensitive file

> git commit -m 'Add encrypted version of a sensitive file'

Encryption options: Transcrypt

OpenSSL + Transcrypt (https://github.com/elasticdog/transcrypt):

>

>

cd <path-to-your-repo>/

transcrypt

echo 'sensitive file filter=crypt diff=crypt' >> .gitattributes
git add .gitattributes sensitive file

git commit -m 'Add encrypted version of a sensitive file’

Vault services

Generic: Vault from HashiCorp
Chef: encrypted data bags
Puppet: hiera-gpg, hiera-eyaml

Ansible: ansible-vault

Anti-pattern: Postponing Secret Isolati

"It's OK for now" does not really work!
It creates a culture of security being not so important!

It may alienate your Dev and Ops teams, because they can't share

code due to hard-coded secrets!

- =

@ Oco_
o_.mms_Nm:os

Anti-pattern: "Fancy-File-Copying"

To configure package X, you keep all configuration files it needs within
your "code”".
You use provisioning tool abstractions to copy every single file onto the

target system.

Anti-pattern: "Fancy-File-Copying"

] file x1.conf

! file z3.conf
4 file t4.conf

?\
provisioning code

\M/ e # server

-
- - -

Example: nginx

nginx.conf
mime.conf
servers.conf
params.conf

nginx.pp | nginx.rb | nginx.ymi

Example: nginx

file { 'servers.conf': ... }
file { 'mime.conf': ... }
file { 'nginx.conf': ... }

file { 'params.conf': ... }

Example: nginx

template: src=servers.conf ...

template: src=mime.conf ...

template: src=nginx.conf ...

template: src=params.conf ...

Hiding abstractions

Well, there are much simpler ways to copy files.

You actually hide your intent and the goal of your configuration.

File and package are not always the right abstractions.

Example: nginx

Upstream Server
Virtual Host
Static Directory

System Wide Setting

Pattern: Infrastructure Component DS

Nobody knows your domain better than you!
You can write your own DSL or you can leverage existing tools.
The main thing is to group infrastructure configuration into reusable

components.

That's what we do with application code, that's what we should do with

laC!

Pattern: Infrastructure Component DS

]
; upstream x1

]
! proxy ax

] downstream y3

H'!A____““*
provisioning code

Xﬂf e # server

Example: pseudo-code

systeml {
http_proxy {
cache=true
business app {

paraml=A

}
database {

memory=3GB

DSL

Bash, Perl, Python, Groovy,... anything works.
Though, Puppet, Chef, Ansible provide facilities to define and group

abstractions.

Pattern: Incremental Configuration

Many packages will already be on the system in their default state.
Instead of duplicating default state in your code, you can only define

an incremental change.

Pattern: Incremental Configuration

set a=x \

provisioning code

AQE

Examples

Disallow root access on the system
Set SELinux into permissive mode

Set default caching timeout in Nginx

Tooling examples

Generic: sed, perl, regular expressions
Puppet: file_line, augeas

Ansible: lineinfile, replace

Chef: ruby

Pattern: Configuration Composition

Compose your configuration of several template calls or API call

blocks.

Expose abstractions through configuration blocks.

Pattern: Configuration Composition

package x1 —— artifact repository

0
]
]
- .
L)
| component b4 \ e
| .. /J/‘"
0 \ y
.

4
)
)

\.
. d
&
provisioning code _

0o

Tooling examples

Puppet: concat module
Ansible: assemble module

Chef: partials

Pattern: Extra-Packaging Code

Package your application in the most approriate format that is ready
for the most hassle-free deployment.

Publish it to artifact repository (Maven, RubyGems, Yum, Apt...).
Artifact repository serves as a layer of isolation between pipelines.
Reduces amount of code needed on later stages of configuration

management.

Pattern: Extra-Packaging Code

package x1 \

]
]

|

[}

]

] \
]

]

|

]

]

/ /

~

~ I -
Se l—— [

provisioning code _

server

AQE

Application can be packaged differenti

jar|gem|pyc]|...
tar.gz|tar.bz2|zip]|...
rpm|deb|msi...

server|container image

Anti-pattern: Data as Code

Data has different lifecycle. It's more dynamic.
Data changes more often than code.

Example 1: use your provisioning tool to define organization users.

Example 2: manifest that lists all your 500 servers.

Pattern: Configuration Discovery

Part or all of system configuration is distributed through auto-discovery

mechanism.
This cleans your laC from storing specifics. Define keys instead of

values.

Basically, "convention over configuration" for your cluster.

Pattern: Configuration Discovery

provisioning code

AQE

server

Tooling examples

Etcd (https://github.com/coreos/etcd)

Eureka (https://github.com/Netflix/eureka)

ZooKeeper (hitps://zookeeper.apache.org/)

Consul (http://www.consul.io/)

Pattern: Configuration Data Source

Useful when number of managed items exceeds certain amount.
Data file (Text, Excel, etc.)
Database (PuppetDB etc.)

Infrastructure Service API

Pattern: Infrastructure Query

Language or API that allows to query your infrastructure state (real

time or last available report).
Examples: AWS EC2 API, PuppetDB, MCollective, Salt

Pattern: Environment Template

Define template from which you can create a fully working
environment.

It gives scaling.

It gives isolation.

It gives flexibilty.

Tooling examples

Vagrant

AWS Cloud Formation
Terraform

Docker and Docker Compose
Kubernetes API

Anti-pattern: Not Treating laC as Code

Code must be in Version Control.

Lack of experience with new tool may require Code Reviews.

Yes, there are tools for Static Code Analysis even for [aC products.
Unit testing does not make a lot of sense for 1aC, but Integration
Testing does.

Applying all the above techniques gives the best QA result for any

code.

Testing laC

Serverspec (http://serverspec.org/)
BATS (https://github.com/sstephenson/bats)

Anti-pattern: Ignoring Styling Guidelin

Each tool/language out there has one.
Nobody canceled clean code teachings.

Reading, writing and eventually merging code is always easier if

people follow the same formatting and styling.

Static code analysis tools

shellcheck (https://github.com/koalaman/shellcheck)

yaml-lint (https://github.com/Pryz/yaml-lint)

Puppet Lint (http://puppet-lint.com/)

Ansible Lint (https://github.com/willthames/ansible-lint)

FoodCritic (http://www.foodcritic.io/)

Pattern: Metrics as Code

Metrics that your application provides evolve with your application.
New components, new endpoints, new KPls...
Keep monitoring configuration close to the code!

Or make it auto-discoverable and visible!

Configuring and collecting metrics

Monitoring software has configuration files and/or an API that can be

programmed.

There a plenty of libraries that allow making monitoring a built-in

feature of your application.

Examples: Java

DropWizard Metrics
Hystrix
StageMonitor

Pattern: Control Panel as Code

Repeatable things live well in scripts.

Scripts can (and will) be well executed by your Cl server (or any other
Ul you can build around your automation).

Effectively, that server becomes your "control panel”.

Keep configuration of your "control panel” in version control.

Example: Jenkins

Jenkins API (https://jenkinsapi.readthedocs.org/en/latest/)

Job DSL (https://github.com/jenkinsci/job-dsl-plugin)
Gradle plugin (https://github.com/ghale/gradle-jenkins-plugin)

Example: RunDeck

RunDeck API (http://rundeck.org/2.5.3/api/index.html)

RunDeck Command Line (http://rundeck.org/docs/man/index.html)

Anti-pattern: Private Fork of a
Community Module

There is a lot of code out there.
Private fork may work as a short-term solution.

Do not keep your updates only to yourself. Share them back.

Pattern: Community Module Wrapper

It's better to create a wrapper.
This simplifies upgrades.

And tracebilty.

Anti-pattern: "Other Stuff”

Team members do not fully understand the logic behind code

organization.

They still are eager to contribute, but when they actually do, they break
it.

Example: "Other Stuff"

. defs
., etc
|, procs

. scripts

Example: "Other Stuff"

. defs

.. etc

. Other Stuff
. procs

. scripts

Example: "Other Stuff"

. defs
N (e

. Other Stuff

. procs

. scripts

Anti-pattern: Big Ball of Mud

Well, it's possible to create mess out of anything.

Pattern: Automation over Documentati

It's quite common that Ops team have been given or have created a
bunch of documents describing procedures for system operations.

Code can do better!

It happens that writing those documents take as much time as writing
and testing code that implement the same guide lines.
Automating procedures can reduce the amount of documentation

needed or eliminate the documentation completely.

Conclusion

Summary of anti-patterns |

Anti-pattern: Golden Image
Anti-pattern: Postponing Secret Isolation
Anti-pattern: "Fancy-File-Copying"

Anti-pattern: Data as Code

Summary of anti-patterns li

Anti-pattern:
Anti-pattern:
Anti-pattern:
Anti-pattern:
Anti-pattern:

Not Treating laC as Code

Ilgnoring Styling Guidelines

Private Fork of a Community Module
"Other Stuff"

Big Ball of Mud

Summary of patterns |

Pattern:
Pattern:
Pattern:
Pattern:
Pattern:
Pattern:

Pattern:

Reproducible Images

Secret Isolating

Encrypted Secrets
Infrastructure Component DSL
Incremental Configuration
Configuration Composition

Extra-Packaging Code

Summary of patterns Il

Pattern:
Pattern:
Pattern:
Pattern:
Pattern:
Pattern:
Pattern:

Pattern:

Configuration Discovery
Configuration Data Source
Infrastructure Query

Metrics as Code

Control Panel as Code
Community Module Wrapper
Environment Template

Automation over Documentation

That's it!

Thank you!

Questions?

Feedback Is
welcome!

Share your patterns:

Write a blog post!
Share a tweet with @codingandrey or #iacpatterns.

Or just write me to andrey@aestasit.com.

85

